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Abstract

The western honey bee, Apis mellifera, lives worldwide in approximately 102 million
managed hives but also wild throughout much of its native and introduced range.
Despite the global importance of A. mellifera as a crop pollinator, wild colonies have

received comparatively little attention in the scientific literature and basic information

BN1.9QG’ UK. regarding their density and abundance is scattered. Here, we review 40 studies that
Email: ov32@sussex.ac.uk
have quantified wild colony density directly (n=33) or indirectly using genetic mark-
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Trust ence wild colony density. We also compare the density of wild and managed colonies

ers (h=7) and analyse data from 41 locations worldwide to identify factors that influ-

at a regional scale using data on managed colonies from the Food and Agriculture
Organization (FAO). Wild colony densities varied from 0.1 to 24.2/km? and were sig-
nificantly lower in Europe (average of 0.26/km?) than in Northern America (1.4/km?),
Oceania (4.4/km?), Latin America (6.7/km?) and Africa (6.8/km?). Regional differences
were not significant after controlling for both temperature and survey area, suggest-
ing that cooler climates and larger survey areas may be responsible for the low densi-
ties reported in Europe. Managed colony densities were 2.2/km? in Asia, 1.2/km? in
Europe, 0.2/km?, in Northern America, 0.2/km? in Oceania, 0.5/km? in Latin America
and 1/km? in Africa. Wild colony densities exceeded those of managed colonies in all
regions except Europe and Asia. Overall, there were estimated to be between two and
three times as many wild colonies as managed worldwide. More wild colony surveys,
particularly in Asia and South America, are needed to assess the relative density of

wild and managed colonies at smaller spatial scales.
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1 | INTRODUCTION

and introduced range (Americas, Asia and Oceania). In 2021, there
were an estimated 102million managed honey bee colonies world-

Beekeeping with the western honey bee (Apis mellifera L.) dates back wide (FAQ, 2021), the majority being A. mellifera. A. mellifera pollinates

to ancient Egypt (Crane, 1999) and is now practiced on every continent approximately half of all globally important crops (Klein et al., 2007)

except Antarctica, in both its native (Africa, Europe and Middle East) and contributes over £100 billion to the global economy every
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year through pollination and honey production (Gallai et al., 2009).
However, in addition to living in managed hives, A. mellifera colo-
nies also live wild, typically nesting in cavities in trees (Figure 1) and
buildings (Gambino et al., 1990; Saunders et al., 2021), but also in the
ground and in rock crevices (Ratnieks et al., 1991) and occasionally not
in a cavity (Boreham & Roubik, 1987; Saunders et al., 2021).

Apis mellifera is well-studied in the contexts of general biology
and beekeeping, but wild colonies are less studied (Seeley, 2019).
For example, the first comprehensive study of the characteris-
tics of natural nests (Seeley & Morse, 1976) was not made until
several decades after the discovery of the dance language (von
Frisch, 1937). Wild colonies are sometimes (Thompson, 2012),
and incorrectly, viewed as a by-product of beekeeping and have
received comparatively little attention in the scientific literature
(Kohl & Rutschmann, 2018). One important gap in our knowledge
of A. mellifera is very basic: the density of wild colonies. Indeed,
A. mellifera is listed as ‘data deficient’ on the ICUN Red List of
Threatened Species (De la Rua et al., 2014).

Wild A. mellifera colony densities were reviewed by Ratnieks
et al. (1991) and found to range from 0.17 to 7.8/km? at 9 locations
worldwide (Africa: 1, Europe: 1, Latin America: 3, North America: 4).
Two decades later, using an indirect method based on population
genetics, Jaffé et al. (2010) estimated the densities of both wild and
managed colonies combined at 25 locations across its native range

FIGURE 1 Wild honey bee, Apis mellifera, colony in a tree cavity
in southern England.

(Africa: 10, Asia: 2, Europe: 13), which ranged from 0.8 to 10.2/km?.
However, at most locations, the number of colonies detected using
genetic markers could be accounted for by the estimated number
of managed colonies, suggesting that wild colonies were rare or
even absent in parts of its native range. However, indirect measures
of colony density are subject to various limitations (reviewed by
Utaipanon, Holmes, et al., 2019; Williamson et al., 2022), which make
it difficult to detect wild colonies living at low densities in areas with
many managed colonies (Kohl & Rutschmann, 2018).

Based on direct measures of wild colony density (Kohl &
Rutschmann, 2018; Oleksa et al., 2013) and cavity density data,
Requier et al. (2020) estimated the number of wild A. mellifera col-
onies that could be sustained in forests in a 4.6million km? area of
Europe. Forests made up 1.4million km? (31%) of the study area
and were estimated to contain approximately 80,000 wild colonies
(0.057/km? of forest). This is only 2% of the number of managed
colonies reported in this region by the FAO (Requier et al., 2020),
although the estimated number of wild colonies was based on lower
bound estimates of colony density and did not account for wild col-
onies present in habitats other than forests (Requier et al., 2020).
Therefore, the actual number of wild colonies present in Europe is
likely much higher and probably represents an important component
of total colony numbers.

Here, we review all studies that have measured the density of
wild A. mellifera colonies with a focus on studies that used direct
surveys to count colonies in defined areas. In the 30years since the
review by Ratnieks et al. (1991), there has been an upsurge in inter-
est in pollinators and the number of wild colony surveys reported
in the literature has increased three-fold (see Section 4). A. mellifera
is economically important and occurs worldwide and there are sev-
eral reasons why information on the density of wild colonies is im-
portant, including the conservation of native subspecies (reviewed
by Requier et al., 2019) and as sources of genetic variation in bee-
keeping (see below). Therefore, a comprehensive review is timely.
In addition, we further analyse the data set to investigate factors
that influence wild A. mellifera colony density. We also compare the
density of wild and managed colonies at a regional scale using data
on managed colonies from the FAO and make a tentative estimate

for the number of wild A. mellifera colonies worldwide.

2 | WHY IS WILD A. MELLIFERA COLONY
DENSITY IMPORTANT?

Information on the density of wild A. mellifera colonies, in both its
native and introduced ranges, is of both ecological and economic
importance. For instance, measures of wild colony density in agricul-
tural areas, in combination with information on foraging distances
(Couvillon et al., 2014), could be used to assess their potential contri-
bution to crop pollination. Indirect measures of wild colony density
have been lower in agricultural areas compared to natural habitats
(Hinson et al., 2015; Jaffé et al., 2010), possibly due to a lack of suit-
able nesting sites in the former (Oleksa et al., 2013). Therefore, the
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contribution of wild colonies to crop pollination in large-scale farm-
ing operations is probably low compared to managed colonies which
can be placed at very high densities for short periods of time, such
as 2 per acre (500/km?) for almond pollination (Mader et al., 2010)
and 6.7 per acre (1650/km?) for onion pollination (literature average,
Delaplane & Mayer, 2000).

Measures of colony density can also be used to address concerns
regarding theimpact that both managed and wild colonies of A. mellifera
have in their introduced range. Proposed threats include competition
with native pollinators for floral resources (Paini, 2004), competition
with native vertebrates for nest sites (Oldroyd et al., 1994; Pacifico
et al., 2020), pollination of exotic weeds (Goulson & Derwent, 2004)
and the introduction of exotic pests and disease (Taylor et al., 2007).
In Australia, measures of colony density have been used to determine
whether wild colonies pose a significant threat to native ecosystems
and, in extreme cases, whether eradication would be possible (Hinson
et al., 2015; Oldroyd, 1998; Oldroyd et al., 1994).

Repeated surveys can also be used to monitor changes in wild col-
ony density over time. For example, in the Arnot Forest in western
New York State, three surveys spanning over 30years (1978, 2002 and
2011) showed that the introduction of the ectoparasitic mite, Varroa
destructor, in the 1990s had no long-term effect on the density of wild
A. mellifera colonies living in the area (Seeley, 2007; Seeley et al., 2015;
Visscher & Seeley, 1982) even though Varroa became established be-
tween the first and second surveys. Similarly, in The Welder Wildlife
Refuge, Texas, two surveys conducted both during (1991-2001) and
after (2013) the invasion of Africanised bees showed that wild colony
densities remained high over a decade after the invasion (5.4/km?) and
that wild colonies retained a stable mixture of European- and African-
derived genetics. These studies are important in showing that wild
populations of A. mellifera can remain stable over long periods despite
significant changes in the bees themselves or their pests.

Importantly, the role of natural selection on colony survival
will be affected by the number of wild colonies present in an area.
Many types of disease management, including the use of chemicals
to kill Varroa mites, play an important role in the survival of man-
aged colonies (van Dooremalen et al., 2012), but will likely reduce
the effect of natural selection for disease resistance (Neumann &
Blacquiere, 2016). Several wild and unmanaged populations of A.
mellifera have been shown to possess natural mechanisms that re-
duce Varroa population growth (Mondet et al., 2020) including short
post-capping durations (Le Conte et al., 2007; Oddie et al., 2018),
cell recapping (Hawkins & Martin, 2021; Oddie & Dahle, 2021) and
Varroa-sensitive hygiene (Harris, 2007; Panziera et al., 2017). In a
typical population of A. mellifera, where wild and managed colonies
can interbreed over long distances (De la Raa et al., 2013), heritable
traits that confer long-term resistance to Varroa will likely increase
in frequency more rapidly when a greater proportion of colonies
are wild and exposed to natural selection (Requier et al., 2019;
Youngsteadt et al., 2015). These traits are also present in managed
colonies at low frequencies and can be increased via artificial selec-
tion and queen rearing (Bigio et al., 2014; Bichler et al., 2010; Pérez-
Sato et al., 2009; Rinderer et al., 2010).
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3 | METHODS

3.1 | Choice of studies

Here, we review 55 reports of wild honey bee colony density from
a total of 40 studies published between 1971 and 2022, although
the actual data from Galton (1971) originates from the late 1600s
(Seeley, 2019). 33 reports come from regions where A. mellifera is
introduced (Australia: 16, Latin America: 7, USA: 10), versus 22 from
within A. mellifera's native range (Africa: 13, Europe: 9). Interestingly,
there have been no reports of established wild populations of A. mel-
lifera in eastern or southern Asia despite their increasing use in com-
mercial beekeeping. This is suggested to be due to the parasites and
diseases of other species of honey bee present in these regions (e.g.
Apis cerana; Oldroyd & Nanork, 2009; see Section 5).

Direct measures of wild colony density (n=35, Table 1) were
made using one or more of the following methods. Direct searches
were the most common (n=19) and involved looking for bees
going in and out of nesting cavities. Nine surveys were made using
bee-lining, which involves following marked bees back to their nest
by recording the direction they depart from a food source and
the time it takes them to return (Seeley, 2016). Four surveys were
made using local knowledge, which involved communications with
local residents, landowners and African honey hunters (Kajobe &
Roubik, 2006; Schneider & Blyther, 1988). Four surveys were made
using data from either forest beekeeping in Russia (n=1), in which
honey from wild colonies living in trees is harvested (Seeley, 2019)
or colony removal records from urban areas (n=3).

Indirect measures of wild colony density (=19, Table 2) were
made by taking samples of honey bees from either the worker prog-
eny of queens mated in an area of interest (Arundel et al., 2014;
Jaffé et al., 2010; Moritz et al.,, 2007) or, more commonly, from
drones trapped at drone congregation areas (DCAs; Arundel
etal., 2013; Hinson et al., 2015; Jaffé et al., 2010; Moritz et al., 2007,
2008, 2013; Utaipanon, Holmes, et al., 2019; Utaipanon, Holmes,
et al., 2021; Utaipanon, Schaerf, et al., 2021). The number of col-
onies within a given radius of the mating apiary or DCA is then in-
ferred by the number of unique genotypes present in the sample of
worker progeny or trapped drones, respectively. Indirect measures
of wild colony density were only included if they excluded the effect
of managed colonies on the total number of colonies detected. For
example, Jaffé et al. (2010), Arundel et al. (2014), Hinson et al. (2015)
and Utaipanon, Schaerf, and Oldroyd (2019) sampled sites with little

or no managed colonies within drone flight distance.

3.2 | Areasurveyed

The area over which wild colonies were located (direct) or detected
(indirect) was, in most cases, explicitly stated by the authors in
their calculation of wild colony density. Survey areas were some-
times given as the total area of multiple plots of a standard size
(<0.05km? each; Darchen, 1972; Goodman & Hepworth, 2004;
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Kajobe & Roubik, 2006; Oldroyd et al., 1994, 1997) or the area of
a circle with a given radius (Danka et al., 1994; Morse et al., 1990;
Seeley & Radcliffe, 2018; Seeley & Chilcott, 2020; Taber, 1979),
but in most cases the origin of survey areas was not given. In cases
where survey areas were not explicitly stated, they were estimated
by either dividing the number of colonies by the reported density
2008; McNally & Schneider, 1996) or by using other
information provided by the authors. For example, survey areas in
Oleksa et al. (2013) and Kohl et al. (2022) were calculated using the
density of rural avenues and cavity trees, respectively.

(Baum et al.,

Areas surveyed using indirect measures were assumed to be either
2.5km? (drone trapping) or 4.5km? (worker progeny), based on the as-
sumption that drones mate at a median distance of 900m from their
colony (Taylor & Rowell, 1988) and that queens mate over an area ap-
proximately 1.8 times as large (Jaffé et al., 2010). An exception to this
is Utaipanon, Schaerf, and Oldroyd (2019), who measured their own
drone mating distances and found that drones caught along two 7-km
transects in New South Wales were sampled from a much larger area
of 86.5km?. Honey bee mating distances can vary significantly (Jensen
et al., 2005) and even a small increase in distance can have a large ef-

fect on the resulting area (Utaipanon, Schaerf, & Oldroyd, 2019).

3.3 | How multiple surveys at a location
were combined

Data from each survey location were combined to produce a single
value for wild colony density. In some locations, data were combined
over multiple years (Baum et al., 2005, 2008; Bila Dubai¢ et al., 2021;
Boreham & Roubik, 1987; Kohl et al., 2022; Paton, 1996; Rutschmann
et al., 2022; Taber, 1979) or across multiple sites or plots within a
wider general location (Darchen, 1972; Galton, 1971; Goodman &
Hepworth, 2004; llyasov et al., 2015; Kajobe & Roubik, 2006;

Kerr, 1971; Oldroyd et al., 1994, 1997; Oleksa et al., 2013; Paton, 1996;
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Ratnieks et al., 1991). In the former, the mean number of wild colonies
located each year was divided by the survey area, which was assumed
to remain constant, as some colonies reported in each year would
have been the same colonies as the previous year. For instance, using
colony removal records, Baum et al. (2008) inferred the location of
wild colonies in a 900km? area of Tucson, Arizona, during the inva-
sion of Africanised bees from 1994 to 2001. The mean number of
colonies located each year was 644.7, which produced a combined
density of 0.7/km?. In cases where survey area did not remain con-
stant (Kohl et al., 2022; Williamson et al., 2022), only data from the
most recent survey were used to calculate density.

To combine data collected at different sites or plots within a sur-
vey location the total number of colonies located (direct) or detected
(indirect) was divided by the total survey area. For example, Ratnieks
etal.(1991) located 27 colonies in three sites near Tapachula, Mexico,
with a total area of 4.1km?, which resulted in a combined density
of 6.6/km?. The same method was used to calculate regional densi-
ties of managed colonies using the total landmass (km?) of countries
where FAO data are available (h=117).

3.4 | Criteria that excluded a study

In cases where a location had been surveyed by different stud-
ies using the same survey method, only data from the most re-
cent study were included in the analysis. This includes the Arnot
Forest, Okavango, Welder Wildlife Refuge, Wyperfeld National
Park (Wimmera), Gauteng and Tswalu Game Reserve (Figure 2).
Studies that surveyed a total area of <1km? (Cunningham
et al.,, 2022; Darchen, 1972; Goodman & Hepworth, 2004,
Oldroyd et al., 1994, 1997) were not included in the analysis
because these often produced unrepresentative high densities
(>50/km?, Table 1) that were probably not representative of the
surrounding habitats.
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managed honey bee colonies. Map generated in QGIS (v3.16.11).
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3.5 | Statistical analyses

All analyses were performed in R (v4.3.1; R Core Team, 2023) and
all plots were made using ggplot2 (Wickham, 2016). We analysed
data from a total of 41 locations where wild colony density had been
quantified either directly (n=25) or indirectly using genetic markers
(n=16; Table S1). Each survey location was allocated to one of five
broad geographical regions (Africa, Europe, Latin America, Northern
America, Oceania). The Americas were split into Northern (USA and
Canada) and Latin America rather than North and South America
because only one report of wild colony density has been made in
South America (Kerr, 1971). Each location was also allocated to one
of three categories of land use (disturbed, undisturbed, mixed) based
on the level of human disturbance (similar to Arundel et al., 2014;
Hinson et al., 2015). For instance, natural habitats, such as nature
reserves and unmanaged woodland, were listed as undisturbed
(n=20), whereas agricultural land and urban areas were listed as dis-
turbed (n=12) and locations consisting of both were listed as mixed
(n=9; see Tables 1 and 2 for a full list of habitats).

Climate data were obtained in the form of raster datasets with a
global coverage. The mean value of each variable was extracted from
a 50km radius around each survey location using the Zonal Statistics
tool in QGIS (v3.16.11). Simulated monthly temperature (°C) and precip-
itation (mm) data, with a spatial resolution of 0.5 by 0.5 degrees, were
obtained from the Climatic Research Unit Time-Series (v4.04; Harris
et al.,, 2020) and averaged from 1970 to 2020. Monthly net primary
productivity (gC/m®/day) data, with a spatial resolution of 0.1 by 0.1 de-
grees, were obtained from NASA's terra MODIS satellite (product key:
MOD17,vé6.1; Running & Zhao, 2021) and averaged from 2001 to 2015.

3.6 | Model selection

Generalised linear models (GLMs) with Gamma error distributions
were used to test for the effect of region, land use, climate and sur-
vey area on density at the 41 locations. Models with and without
a variable were compared using their Akaike information criterion
(AIC), a measure of goodness of fit that penalises models with more
variables. A lower AIC indicates that a model better fits the data,
although a difference in AIC (AAIC) of <2 is considered non-signif-
icant. Models with only one variable were compared with the null
model, which only includes an intercept term. Tukey HSD tests were
used to test for regional differences in density after controlling for
other variables such as climate and survey area. Tukey tests were run
using multcomp (Hothorn et al., 2008) and p values were adjusted
using the Bonferroni method. Geometric means are given for density
and area because they both occur on a logarithmic scale.

3.7 | FAO data on managed colonies

FAO data on managed colonies were available for 117 countries
(Africa: 24, Asia: 26, Europe: 33, Latin America: 22, Oceania: 10,

Northern America: 2; Table S2; Figure 2). Only the most recent
reports of managed colony numbers were used to calculate den-
sity. For most countries, these were made in 2021, except for
Guadeloupe (1990), the Netherlands (1987), the United Kingdom
(1987) and Belgium (2017). The FAO does not specify the species of
honey bee that are managed in each country, and in particular, the
proportion of managed colonies in southern and eastern Asia that
are A. cerana. However, it is believed that, even in eastern Asia, most
managed colonies are A. mellifera (Osterman et al., 2021). A. cerana is
native only to Asia, but not including western Asia and had been in-
troduced into New Guinea and Queensland, Australia (Koetz, 2013).

4 | RESULTS

4.1 | Regional variation in wild colony density

Wild colony densities reported in the literature were highly vari-
able, ranging from 0.1/km? in Northern Poland to 148/km? in
Australia (Table 1). Densities in our sample of 41 locations worldwide
(Figure 2), ranged from 0.1 to 24.2/km? and fit a Gamma distribu-
tion with a geometric mean of 2.5/km?. Region had a significant ef-
fect on density (AAIC=230.7). Densities reported in Europe (average
of 0.26/km?) were significantly lower than Northern America (1.4/
km?, p=.01), Oceania (4.4/km?, p<.001), Latin America (6.7/km?,
p<.001) and Africa (8.4/km?, p<.001; Figure 3). Densities reported
in Northern America were significantly lower than Africa (p=.022)
and Latin America (p=.033) but not Oceania (p=.39). Land use had
no effect on density (AAIC=-2.2).

4.2 | Effect of climate

There was a significant positive correlation between wild colony
density and mean annual temperature (AAIC=18.2). Temperature
also had a significant quadratic component (AAIC=9.9) with den-
sities starting to decrease at mean annual temperatures exceeding
23°C (Figure 4). This model was not a better fit when other variables
were included, such as mean monthly rainfall (AAIC=-1.5) and net
primary productivity (AAIC=1.6), although the latter was borderline
significant. Region still had a significant effect on density after con-
trolling for temperature (AAIC=5.6), with densities remaining sig-
nificantly lower in Europe (p <.05) but not Northern America (p>.1),

compared to the other three regions.

4.3 | Effect of survey area

Survey area varied considerably over nearly 3 orders of magnitude,
even after excluding studies that surveyed <1km (see methods),
ranging from 1.2 km?in Zambia to 924 km?in Tucson, Arizona. Su rvey
area had a significant negative correlation with density (AAIC=24.3;
Figure 4) and was significantly larger in Europe (average of 111km?)
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FIGURE 3 Regional variation in wild
Apis mellifera colony density. Densities
are plotted on a log scale because they
vary over approximately 2.4 orders of
magnitude. Mean regional densities (grey
triangles) are 0.26/km? in Europe (n=8),
1.4/km? in Northern America (n=7),
4.4/km? in Oceania (n=10), 6.7/km?

in Latin America (n=7) and 6.8/km? in
Africa (n=9). Asterisks correspond with p
values <.001 (***) and .05 (*). Boxes show
the interquartile range, horizontal lines

in boxes show the median and whiskers
show the full range excluding outliers.

seokok
The only outlier was a density of 2/km?

Wild colonies per sq.km

reported by Bila Dubai¢ et al. (2021) in
Serbia (Europe).
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FIGURE 4 Effect of mean annual temperature (left) and survey area (right) on wild Apis mellifera colony density. Temperature had a
significant quadratic component with densities decreasing at mean annual temperatures exceeding 23°C (R?=.55). Density had a negative
correlation with survey area (R?=.53). Fit lines and 95% confidence intervals were calculated using a linear model and log-transformed

densities and areas.

and Northern America (18 km2), compared to Latin America (8.7 km2,
p<.01) and Africa (4.7km?, p<.01) but not Oceania (16.2km?, p>.1).
Region still had a significant effect on density after controlling for
survey area (AAIC=13.2). However, region no longer affected den-
sity after controlling for both survey area and mean annual tempera-
ture (AAIC=-1.2).

4.4 | FAO managed colony numbers

Using recent data from the FAO, the number and density of managed
colonies were calculated to be 1.4million (0.18/km?) in Oceania,
3.4 million (0.18/km?) in Northern America, 8.2 million (0.47/km?) in
Latin America, 18.2million in Africa (0.96/km?), 25.4 million (1.2/km?)

in Europe and 45.3 million (2.2/km?) in Asia. Managed colony densi-
ties were lower than mean wild colony densities in all regions except
Europe and Asia (Figure 5).

5 | DISCUSSION

5.1 | Regional variation in wild colony density

Our results show that wild A. mellifera colony densities vary over
approximately 2.4 orders of magnitude from 0.1 to 24.2/km? with a
mean of 2.5/km?. Wild colony densities were highest in sub-Saharan
Africa with an average of 6.8/km?. African A. mellifera swarm fre-
quently and maintain smaller colonies (McNally & Schneider, 1996),
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which enables them to utilise a wider range of nesting cavities
(Baum et al., 2005) and can even build nests in the open (Saunders
et al., 2021). These life history traits will likely have a large effect
on the spatial distribution of wild colonies in areas where the ma-
jority are of African descent. For instance, in the southern USA,
wild Africanised honey bees (hybrids of A. mellifera scutellata and
European subspecies) were more likely to occupy man-made nest-
ing cavities (Baum et al., 2008) and form colony aggregations (Baum
et al., 2005) than European colonies living in the same area.

The high wild colony densities reported in Africa are also in keep-
ing with the fact that honey and brood are commonly harvested
from wild colonies by tribes in Central Africa (Crittenden, 2011;
Kajobe & Roubik, 2006). Traditional beekeeping in Africa also relies
on the colonisation of log hives by wild swarms (Gratzer et al., 2021).
In addition, the greater honeyguide (Indicator indicator) has evolved a
sophisticated mutualism with humans in the detection and predation
of wild colonies (Spottiswoode et al., 2016; Wood et al., 2014). Wild
honey bees are clearly an important part of human life in Africa and
it is unlikely that these complex relationships would have evolved if
wild colonies were rare.

Wild colony densities in Europe (average of 0.26/km?) were
significantly lower than all other regions and were approximately
25 times lower than those reported in Latin America and Africa
(Figure 3). These results probably reflect, in part, differences in
the carrying capacity of temperate and tropical ecosystems. For
instance, it is possible that temperate ecosystems do not pro-
duce enough nectar or pollen to support many wild colonies and
that they naturally occur at lower densities in Europe (Kohl &
Rutschmann, 2018). In a sub-tropical prairie, Baum (2003) found
that the nectar and pollen produced by plants within a 6.3km?
study area could support between 407 and 3161 wild colonies,
but the number of colonies located during an 11-year survey rarely
exceed 75 (12/km?%; Baum et al., 2005), suggesting that wild col-
ony density was limited by other factors. Here, we show that wild

colony densities remained significantly lower in Europe, but not
Northern America, after controlling for climate.

It is possible that human activities are partly responsible for the
low densities reported in Europe. For instance, it has been suggested
that natural nest sites in old trees are lacking in many parts of Europe
due to historical changes in land use (Carreck, 2008; Kohl et al., 2023;
Kohl & Rutschmann, 2018; Oleksa et al., 2013) and that wild colonies
are affected by the high density of managed colonies in this region
through competition for food and the transfer of exotic pests and
maladaptive genetics (Requier et al., 2019). However, estimates from
3 national parks in the Southern Urals (llyasov et al., 2015) suggested
that wild colonies are living in Russian bee forests at similar densities
(0.3/km?) to those recorded in the late 1600s (Galton, 1971), prior
to major land use change (Chorley, 1981) and the advent of modern
beekeeping in Europe (Crane, 1999). Although the historical density
of wild colonies is not known for other parts of Europe.

Itis also possible that wild colony densities were underestimated
in parts of Europe. Four European studies inferred densities over
large areas (average of 111km?) by only searching for wild colonies
in a specific habitat or nesting site, such as trees on rural avenues
(Oleksa et al., 2013), black woodpecker (Dryocopus martius) nests in
forests (Kohl & Rutschmann, 2018; Kohl et al., 2022) and concrete
‘power poles’ in an agricultural landscape (Rutschmann et al., 2022).
Therefore, density was probably underestimated because wild col-
onies present in other habitats or nest sites within the survey area
would not have been located. Indeed, we found that regional differ-
ences in wild colony density were no longer significant after con-
trolling for both climate and survey area.

5.2 | The effect of survey area

We found that survey area had a strong negative correlation with
wild colony density. This might be because a greater proportion of
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colonies are not detected when survey efforts are spread across
larger areas (>50km?). In contrast, high densities produced by small
survey areas (<5 km?) might be the result of a biasing effect whereby
surveys are made in small areas where wild colonies are known to
be abundant and do not reflect the density of wild colonies across
the wider area in which the colonies forage. For instance, Oldroyd
et al. (1994) located 37 wild colonies in a small area (0.25km?) of ri-
parian woodland in Victoria, Australia and reported a density of 148/
km?. However, the density would have been considerably lower if
the survey area had been extended to include neighbouring habitats
that were unsuitable for nesting (i.e. without trees), but in which the
wild colonies were foraging. If the foraging area is taken as a circle of
radius 2, 3 or 5km then the actual area would be approximately 12.6,
28.3 and 78.5km?, leading to densities of approximately 2.9, 1.3 and
0.5/km?. Of course, there may well have been additional wild colo-
nies in these wider areas, so it is not possible to determine the actual
densities. However, it is clear that colony density in a nest site aggre-
gation provided by a restricted area of suitable nesting habitat can
be much higher than a colony density relevant to the foraging area of
those colonies. Similar aggregations can also occur in Apis dorsata, a
species that has open nests, where many colonies nest close to each

other under branches of a tree or on a cliff (Oldroyd et al., 2000).

5.3 | The effect of climate and land use

Temperature and net primary productivity were both positively cor-
related with wild colony density, which probably reflects an increase
in foraging activity and the temporal availability of floral resources.
Wild A. mellifera colonies exhibit seasonal migration in tropical Africa
and America, which is considered an adaptation to changes in the
spatial distribution of floral resources as it allows them to forage
throughout much of the year (McNally & Schneider, 1992). In regions
with lower mean annual temperatures, colonies must survive longer
winters during which floral resources are scarce or absent and when
it is often too cold to forage. In these regions, wild colonies expe-
rience elevated mortality during the winter months (up to 80% of
founder colonies; Seeley, 2017) and this likely has a large effect on
their density the following spring.

Wild colony densities peaked at mean annual temperatures of
23°C (Figure 4), which is consistent with an optimum foraging tem-
perature of approximately 20°C (Abou-Shaara et al., 2017). At mean
annual temperatures exceeding 25°C, honey bee colonies are ex-
posed to temperatures that negatively affect foraging and other as-
pects of colony productivity (Abou-Shaara et al., 2017). Under these
conditions, wild colony densities are probably limited by rainfall,
which has been shown to be an important factor in seasonally arid
locations (Baum et al., 2008; Loper et al., 2006; Oldroyd et al., 1994).
Here, we show that rainfall is a less important factor on a global
scale, which is consistent with Jaffé et al. (2010) who found that wild
colony densities correlated with temperature, but not precipitation,

at 25 sites across A. mellifera's native range.
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Land use and net primary productivity (an index of vegetation) did
not significantly affect density at the 41 sampled locations. Honey
bees are generalists and can forage over long distances in a vari-
ety of habitats (Beekman & Ratnieks, 2000; Ricigliano et al., 2019;
Samuelson et al., 2020) so it is likely that land use only affects wild
colony density at small spatial scales. In our analysis, land use was
generalised over large areas, so we were unlikely to detect small-
scale variation in wild colony density, which is arguably more ecolog-

ically relevant (Utaipanon, Holmes, et al., 2019).

5.4 | Comparisons with FAO data on managed
colonies

Approximately half of all managed honey bee colonies world-
wide (45.3 million) are in Asia (FAO, 2021) and the majority of
these colonies are assumed to be A. mellifera of European de-
scent (Osterman et al., 2021). Therefore, it is likely that managed
swarms frequently escape into the wild, but it seems that they
are unable to form self-sustaining wild populations, although
this needs to be verified. Proposed explanations include compe-
tition with native honey bees (e.g. A. cerana; Manila-Fajardo &
Cleofas, 2003), effects of native honey bee parasites (e.g.
Tropilaelaps clareae; Oldroyd & Nanork, 2009) and difficulty in
regulating brood production in tropical regions with little varia-
tion in day length (Rinderer, 1988). Indeed, European honey bees
are poorly adapted to tropical climates (Harrison & Hall, 1993)
and did not establish large wild populations in tropical America
before Africanised honey bees were introduced (Michener, 1975;
Quezada-Euéan et al., 1996).

Europe has the second-highest number of managed honey bee
colonies worldwide at 25.4 million (FAO, 2021). This includes data
from 33 countries with a total landmass of 21.7km? and equates
to a density of 1.2 managed colonies/km? which is over four times
higher than the average wild colony density reported in Europe.
This suggests that a smaller proportion of colonies are subject to
natural selection in Europe and that beekeeper management plays
a more prominent role in the survival of both managed and wild
colonies. For instance, the widespread use of veterinary treat-
ments by beekeepers in Europe might help keep levels of pests
and disease low enough for both managed and wild colonies to
survive (Thompson, 2012). However, there are probably hotspots
in Europe where wild colonies outnumber managed (Requier
et al., 2020), and there has been an increased emphasis on nat-
ural beekeeping in recent years (Neumann & Blacquiere, 2016)
where, amongst other suggestions, beekeepers are encouraged
not to treat their colonies with chemicals so that they can evolve a
natural resistance to disease (Seeley, 2019). Therefore, natural se-
lection probably still contributes to colony survival in Europe, but
not to the same extent as in other regions like Africa where wild
colonies are more numerous and commercial beekeeping is poorly
developed (Dietemann et al., 2009; Gratzer et al., 2021).
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5.5 | Estimated number of wild A. mellifera colonies
Based on the mean regional densities in Figure 3 and the estimated
area of habitable landmass in each region, we estimate that there
are approximately 280 million wild A. mellifera colonies worldwide,
which is more than double the number of managed colonies re-
ported by the FAO in 2021 (102 million). This is a tentative estimate
based on limited data and should be used with caution. However, the
strong indication is that wild A. mellifera colonies outnumber man-

aged colonies in most regions, with the exception of Europe.

5.6 | Areas for future research

Our study reveals several knowledge gaps regarding wild A. mel-
lifera colony density which could be addressed by future research.
An important area for future research concerns the limits to wild A.
mellifera's geographical range. In Europe, wild colonies are thought
to occur as far north as 60 degrees latitude (Figure 2), which is
consistent with the northernmost survey in our sample (Seeley &
Chilcott, 2020). However, permanent beekeeping is practiced as far
north as 68 degrees in Finland (Meyer-Rochow, 2008) and it is pos-
sible that escaped swarms occur in northern settlements throughout
the summer, but whether they survive the long winters at these lati-
tudes is unknown. Similarly, little is known about wild colonies in the
southernmost parts of A. mellifera's range, such as temperate South
America. For instance, there is little information regarding wild colo-
nies in the southern half of Argentina (below Buenos Aires), where
the majority are of European descent (Rinderer et al., 1993). This also
applies to much of Asia, where wild A. mellifera colonies are thought
to be absent (Oldroyd & Nanork, 2009).

Analyses of wild colony density and numbers on smaller spatial
scales, and possibly incorporating the effects of land use, might help
identify hotspots in native regions where wild colonies outnumber
managed (Requier et al., 2020). This would have implications for the
conservation of native subspecies, given that wild colonies in these
areas might represent local ecotypes and an important source of
genetic diversity (Requier et al., 2019). For instance, wild colonies
in Ireland are considered to be pure A. mellifera mellifera (Browne
et al., 2020; Hasset et al., 2018), the subspecies native to Northern
Europe. Although, managed colonies in Ireland are also mainly A.
mellifera mellifera (NIHBS, 2021). The degree to which wild colonies
are genetically distinct or significantly more native than managed
colonies in other parts of Europe is an important topic for future

research but is beyond the scope of this review.

6 | CONCLUSION

In French, the honey bee (A.mellifera) is called ‘l'abeille domestique’,
the domestic bee and in many countries, presumably including
France, it is seen primarily as a bee that lives under human manage-
ment in hives. However, our study clearly shows that the honey bee

is also ‘une abeille sauvage’, that is living wild in unmanaged colonies
(Seeley, 2019). Indeed, our results indicate that wild colonies out-
number managed colonies, although not in Europe. The realisation of
this important fact should have significant consequences on how we
view the honey bee. For example, the vast numbers of wild colonies,
not to mention the approximately 102million managed colonies,
surely mean that the word endangered, which is frequently used by
the media in the context of the honey bee, is far from accurate even
though beekeepers, especially those in North America and Europe,
have faced increased challenges in maintaining healthy live colonies
in recent decades (Genersch, 2010). On a positive note, it also shows
that in surviving its challenges the honey bee will be aided by natu-
ral selection on wild colonies in many locations. This is shown, for
example, by wild colony surveys in New York States's Arnot Forest
several decades apart using the bee-lining method (Seeley, 2007,
Visscher & Seeley, 1982), which showed the same colony density
before and after the arrival of Varroa mites which are now found in
the wild colonies (Seeley, 2019).
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